Гаусс, Карл Фридрих

Примечания[ | ]

  1. 12Bibliothèque nationale de France идентификатор BNF (фр.): платформа открытых данных — 2011.
  2. 1234verschiedene Autoren Allgemeine Deutsche Biographie (нем.) / Hrsg.: Historische Commission bei der königl. Akademie der Wissenschaften — 1875.
  3. 12 Архив по истории математики Мактьютор
  4. 12 Гаусс Карл Фридрих // Большая советская энциклопедия: / под ред. А. М. Прохорова — 3-е изд. — М.: Советская энциклопедия, 1971. — Т. 6 : Газлифт — Гоголево. — С. 144—145.
  5. https://www.tandfonline.com/doi/full/10.1080/00207160.2012.689826
  6. https://www.maa.org/publications/maa-reviews/50th-imo-50-years-of-international-mathematical-olympiads
  7. https://link.springer.com/content/pdf/10.1007%2F978-3-642-14565-0_3.pdf
  8. Математическая генеалогия (англ.) — 1997.
  9. 12345 Боголюбов, 1983, с. 121—123.
  10. Гиндикин С. Г. Рассказы о физиках и математиках. — М.: МЦНМО, 2001. Глава «Король математиков».
  11. Gauss; Karl Friedrich (1777 — 1855) // Сайт Лондонского королевского общества (англ.)
  12. Les membres du passé dont le nom commence par G (фр.)
  13. Гаусс, Карл Фридрих на официальном сайте РАН
  14. Brian Hayes. Gauss’s Day of Reckoning(неопр.) .American Scientist (2006). doi:10.1511/2006.59.200. Дата обращения 15 октября 2019.
  15. Боголюбов, 1983, с. 219.
  16. Тюлина, 1979, с. 178.
  17. Гаусс К. Об одном новом общем принципе механики (Über ein neues allgemeines Grundgesetz der Mechanik ) / Journal für Reine und Angewandte Mathematik. 1829. Bd. IV. — S. 232—235.) // Вариационные принципы механики: Сб. статей / Под ред. Л. С. Полака. — М.: Физматгиз, 1959. — 932 с. — С. 170—172.
  18. 123 Храмов, 1983, с. 76.
  19. Колмогоров А. Н., Юшкевич А. П. (ред.) Математика XIX века. Т. 1. — М.: Наука, 1978. — С. 52.
  20. Дербишир Дж. Простая одержимость. Бернхард Риман и величайшая нерешённая проблема в математике. — М.: Астрель, 2010. — ISBN 978-5-271-25422-2. — С. 76—77.
  21. Об основаниях геометрии. Сборник классических работ по геометрии Лобачевского и развитию её идей. М.: Гостехиздат, 1956, С.119—120.
  22. Гаусс К. Ф. Отрывки из писем и черновиков, относящиеся к неевклидовой геометрии // Основания геометрии. — М.: ГИТТЛ, 1956.
  23. Обычно говорят, что он боялся быть непонятым. Действительно, в одном письме, где затрагивается вопрос о пятом постулате и неевклидовой геометрии, Гаусс пишет: «бойтесь крика беотийцев» <�…> Возможно, однако, другое объяснение молчания Гаусса: он один из немногих понимал, что, как бы много интересных теорем неевклидовой геометрии ни было выведено, это ещё ничего не доказывает — всегда теоретически остается возможность, что в качестве дальнейших следствий будет получено противоречивое утверждение. А может быть, Гаусс понимал (или чувствовал), что в то время (первая половина XIX в.) ещё не найдены математические понятия, позволяющие точно поставить и решить этот вопрос. // Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия, гл. XII, пар. 2, — Физматлит, Москва, 2009.
  24. Об основаниях геометрии. Сборник классических работ по геометрии Лобачевского и развитию её идей. — М.: Гостехиздат, 1956. — С. 103.
  25. Моисеев, 1961, с. 334.
  26. Göttinger Digitalisierungszentrum: Seitenansicht
  27. Тюлина, 1979, с. 179—180.
  28. Маркеев, 1990, с. 90.
  29. Голубев, 2000, с. 417.
  30. Дронг В. И., Дубинин В. В., Ильин М. М. и др. Курс теоретической механики / Под ред. К. С. Колесникова. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2011. — 758 с. — ISBN 978-5-7038-3490-9. — С. 526.
  31. Маркеев, 1990, с. 89.
  32. Голубев, 2000, с. 427.
  33. Гелиотроп Гаусса
  34. Измеряя мир (неопр.) (недоступная ссылка). Дата обращения 27 июня 2013. Архивировано 8 января 2014 года.

Литература

  • Боголюбов А. Н.  Математики. Механики. Биографический справочник. — Киев: Наукова думка, 1983. — 639 с.
  • Бюлер В.  Гаусс. Биографическое исследование. — М.: Наука, 1989. — 208 с. — ISBN 5-02-013919-X.
  • Гаусс К. Ф.: Сб. статей под ред. И. М. Виноградова (к 100-летию со дня смерти). — М.: АН СССР, 1956. — 312 с.
  • Голубев Ю. Ф.  Основы теоретической механики. — М.: Изд-во Моск. ун-та, 2000. — 719 с. — ISBN 5-211-04244-1.
  • Колчинский И. Г., Корсунь А. А., Родригес М. Г.  Астрономы: Биографический справочник. — 2-е изд., перераб. и доп.. — Киев: Наукова думка, 1986. — 512 с.
  • Маркеев А. П.  Теоретическая механика. — М.: Наука, 1990. — 416 с. — ISBN 5-02-014016-3.
  • Моисеев Н. Д.  Очерки истории развития механики. — М.: Изд-во Моск. ун-та, 1961. — 478 с.
  • Тюлина И. А.  История и методология механики. — М.: Изд-во Моск. ун-та, 1979. — 282 с.
  • Храмов Ю. А. Гаусс Карл Фридрих (Gauss Karl) // Физики: Биографический справочник / Под ред. А. И. Ахиезера. — Изд. 2-е, испр. и дополн. — М.: Наука, 1983. — С. 76. — 400 с. — 200 000 экз. (в пер.)

Увековечение памяти[ | ]

В честь Гаусса названы:

  • кратер на Луне;
  • малая планета № 1001 (Gaussia);
  • Гаусс — единица измерения магнитной индукции в системе СГС; сама эта система единиц часто именуется гауссовой ;
  • одна из фундаментальных астрономических постоянных — постоянная Гаусса;
  • награда за выдающиеся достижения в прикладной математике, присуждаемая раз в 4 года на Международном конгрессе математиков;
  • вулкан Гауссберг в Антарктиде;
  • его портрет и изобретённый им измерительный инструмент «гелиотроп» изображены на вышедшей из оборота, но предоставляющей интерес для бонистов банкноте в 10 марок.

С именем Гаусса связано множество теорем и научных терминов в математике, астрономии и физике, некоторые из них:

  • Алгоритм Гаусса вычисления даты Пасхи
  • Гауссова кривизна
  • Гауссовы целые числа
  • Гипергеометрическая функция Гаусса
  • Интерполяционная формула Гаусса
  • Квадратурная формула Гаусса — Лагерра
  • Метод Гаусса для решения систем линейных уравнений.
  • Метод Гаусса — Жордана
  • Методы Гаусса — Зейделя
  • Метод Гаусса (численное интегрирование)
  • Нормальное распределение, или распределение Гаусса
  • Отображение Гаусса
  • Признак Гаусса
  • Проекция Гаусса — Крюгера
  • Прямая Гаусса
  • Пушка Гаусса
  • Ряд Гаусса
  • Система единиц Гаусса для измерения электромагнитных величин.
  • Теорема Гаусса — Ванцеля о построении правильных многоугольников и числах Ферма.
  • Теорема Гаусса — Остроградского в векторном анализе.
  • Теорема Гаусса — Лукаса о корнях комплексного многочлена.
  • Формула Гаусса — Бонне о гауссовой кривизне.
  • Гаусс на почтовых марках
  • Почтовая марка ФРГ (1955), 10 пфеннигов, (Михель 204)
  • Почтовая марка ФРГ, 1977 год, 40 пфеннигов (Михель 928)

В литературе и кино

Жизни Гаусса и Александра фон Гумбольдта посвящён фильм «Измеряя мир» («Die Vermessung der Welt

», 2012, Германия). Фильм снят по одноимённому роману писателя Даниэля Кельмана.

Механика

В 1824 году Гаусс был заочно включен в состав членов Петербургской Академии наук. На этом его достижения не заканчиваются, он все так же упорно занимается математикой и презентует новое открытие: «целые числа Гаусса». Под ними подразумевают числа, имеющие мнимую и вещественную часть, которые являются целыми числами. По сути, своими свойствами гауссовские числа напоминают обычные целые, но те небольшие отличительные характеристики позволяют доказать биквадратичный закон взаимности.

В любое время он был неподражаем. Гаусс – математик, открытия которого так тесно переплетены с жизнью, – в 1829 году внес новые коррективы даже в механику. В это время вышел его небольшой труд «О новом универсальном принципе механики». В нем Гаусс доказывает, что принцип малого воздействия, можно по праву считать новой парадигмой механики. Ученный уверяет, что этот принцип можно применять ко всем механическим системам, которые связаны между собой.

Труды

  • 1799: Докторская диссертация по фундаментальному em al ra, с заглавием: Demonstrestrestio nova s omnem functionem al raition integram unius variabilies in factores reales primi vel secundi s resolvi posse (“Новое доказательство em того, что каждая целальная аль ральная функция одной переменной может быть разрешена в действительные факторы&quot);
  • 1801: Dis sitiones Arithmeticae (латиница). Немецкий перевод Х. Мазера, стр. 1 – 453. Английский перевод Артура А. Кларка.
  • <UNK> 8:. Немецкий перевод Х. Мазера, стр. 457 – 462
  • № 9: The Motus Corporum Coel um в разделе contionibus conicis solem entium (The der der elsk per, die in K umk);, Теория движения небесных тел, движущихся о Солнце в конических сечениях (английский перевод К. Х. Дэвиса), Repr 1963, Dover, new.
  • <UNK> 1:. Немецкий перевод Х. Мазера, стр. 463 – 495 [
  • 2: Dis sitiones Generales Circa Seriem Infinitam
  • <UNK> 8:. Перевод на немецкий язык Х. Мазера, стр. 496 – 510
  • 1821, 1823 и 1826: The combinationis observationum erroribus minimis obnoxiae. Abhand die ung als des Gau
  • 1827: Dis sitiones generales circa super ies curvas, Commentationes Societatis Regiae Scientiarum Cingesis Recentiores. Том VI, стр. 99 – 146. “Общие исследования искривлённых aces” (опубликовано 1965), Ra Press, Нью-Йорк, в переводе Дж. К. Морхеда и А. М. Хильтебёля.
  • 1828:. Немецкий перевод Х. Мазера
  • 1828:
  • <UNK> 2:. Немецкий перевод Х. Мазера, стр. 534 – 586 [Вводит целые числа Гаусса, утверждает (без доказательства) закон биквадратического recycrocity, доказывает закон для 1 + i]
  • Перевод на английский язык
  • 1843/44: der Geodäsie. АBhandlung, Аbhandyder СHder Сд в Ах. Band, стр. 3 – 46
  • 1846/47: der Geodäsie. АBhandlung, Аbhandyder СHder Сд в Ах. Диапазон Ter, стр. 3 – 44
  • Tageb 1796 – 4, Ostwaldts ker, Harri 2005, An von Neumamn, (английский перевод с аннотациями Джер Грая: Exp tiones Math. 1984)

Комментарии

Немецкий 10-Mark Banknote (1993; disontinued) Гаусс С 1989 по 2001 год, Гаусс его, нормальная кривая распределения и некоторые видные здания были на немецкой десятимарковой banknote. Реа подход для Ганновера. Германия также выпустила три почтовых штампа в честь Гаусса. Один (№ 725) появился в 1955 году к й годовщине его смерти; два других, № 1246 и № 1, в 1977 году, к 200-летию со дня его рождения.

Роман Даниэля Кёмана “Die essung der ” 2005 года, переведённый на английский язык как “Измеряя мир” (2006), исследует жизнь и творчество Гаусса через лены исторической фантастики, их с лентами немецкого исследователя Александра фон Гумболья. Киноверсия режиссёра Детлёва Бу вышла на экраны в 2012 году.

В 2007 году в храме Вальхалла был помещён бюст Гаусса.

Многочисленные вещи, названные в честь Гаусса, включают в себя:

  • Нормальное распределение, также известное как распределение Гауссяна, наиболее распространенная колокольная кривизна в статистике
  • Премия Гаусса, одна из самых высоких наград в cs
  • gauss, блок CGS для магнитного поля

В 1929 году польский По просьбе профессора Познайского университета Здислава Крыгёя по прибытии в Г. Реджевски возложил цветы к могиле Гаусса.

30 апреля 2018 года компания Google удостоила Гаусса чести на его предстоящем 241-м дне рождения с помощью Google Dightle, выставленного в Европе, России, Израиле, Японии, Южной и Центральной Америке и США.

Гаусса, который также ввёл так называемые логарифмы Гаусса, иногда путают с (1829 – 1915), немецким геологом, который также опубликовал некоторые известные таблицы логарифмов, использованные в начале 1980-х годов.

Главная теорема алгебры

Начало ХІХ века Германия встретила в состоянии анархии и упадка. Эти годы были тяжелыми для математика, но он продолжает жить дальше. В 1810 году Гаусс второй раз связывает себя узами брака – с Минной Вальдек. В этом союзе у него появляется еще трое детей: Тереза, Вильгельм и Ойген. Также 1810 год был ознаменован получением престижной премии и золотой медали.

Гаусс продолжает свою работу в областях астрономии и математики, исследуя все больше и больше неизвестных составляющих этих наук. Его первая публикация, посвященная основной теореме алгебры, датируется 1815 годом. Главная идея заключается в следующем: число корней многочлена прямопропорциональна его степени. Позже высказывание приобрело несколько иной вид: любое число в степени, не равной нолю, априори имеет как минимум один корень.

Впервые он доказал это еще в 1799 году, но не был доволен своей работой, поэтому публикация вышла в свет спустя 16 лет, с некоторыми поправками, дополнениями и вычислениями.

Астрономия и царица наук

в 1799 году Карл Гаусс (математик) получает титул приват-доцента Брауншвейнского университета. Спустя два года ему предоставляют место в Петербургской Академии наук, где он выступает в качестве корреспондента. Он все еще продолжает изучать теорию чисел, но круг его интересов расширяется после открытия небольшой планеты. Гаусс пытается вычислить и указать ее точное местонахождение. Многие задаются вопросом, как называлась планета по вычислениям математика Гаусса. Однако немногим известно, что Церера – не единственная планета, с которой работал ученый.

В 1801 году впервые было обнаружено новое небесное тело. Это случилось неожиданно и внезапно, точно так же неожиданно планета была утеряна. Гаусс попытался обнаружить ее, применяя математические методы, и, как ни странно, она была именно там, куда указал ученный.

Астрономией ученый занимается более двух десятилетий. Всемирную известность получает метод Гаусса (математика, которому принадлежит множество открытий) для определения орбиты с помощью трех наблюдений. Три наблюдения – это место, в котором располагается планета в разный период времени. С помощью этих показателей была вновь найдена Церера. Точно таким же образом обнаружили еще одну планету. С 1802 года на вопрос, как называется планета, обнаруженная математиком Гаусса, можно было отвечать: “Паллада”. Забегая немного вперед, стоит отметить, что в 1923 году именем известного математика назвали крупный астероид, вращающийся вокруг Марса. Гауссия, или астероид 1001, – это официально признанная планета математика Гаусса.

Это были первые исследования в области астрономии. Возможно, созерцание звездного неба стало причиной того, что человек, увлеченный числами, принимает решение обзавестись семьей. В 1805 году берет в жены Иоганну Остгоф. В этом союзе у пары рождается трое детей, но младший сын умирает в младенчестве.

В 1806 году скончался герцог, который покровительствовал математику. Страны Европы наперебой начинают приглашать Гаусса к себе. С 1807 года и до последних своих дней Гаусс возглавляет кафедру в Геттингенском университете.

В 1809 году умирает первая жена математика, в этом же году Гаусс издает свое новое творение – книгу под названием «Парадигма перемещения небесных тел». Методы для вычисления орбит планет, что изложены в этом труде, актуальны и сегодня (правда, с небольшими поправками).

Студенческие годы

После колледжа Гаусс учится в Геттингенском университете. Этот период жизни биографы обозначают как самый плодотворный. В это время ему удалось доказать, что начертить правильный семнадцатиугольник, используя лишь циркуль, представляется возможным. Он уверяет: можно нарисовать не только семнадцатиугольник, но и другие правильные многоугольники, пользуясь только циркулем и линейкой.

В университете Гаусс начинает вести специальную тетрадь, куда заносит все записи, которые касаются его исследований. Большинство из них были скрыты от глаз общественности. Для друзей он всегда повторял, что не сможет опубликовать исследование или формулу, в которых не уверен на 100%. По этой причине большинство из его идей были открыты другими математиками спустя 30 лет.

Личность Карла Гаусса

Карл Гаусс был максималистом. Он никогда не публиковал сырые, даже гениальные труды, считая их несовершенными. Из-за этого в ряде многих открытий его опередили другие математики.

Ученый также был полиглотом. Он свободно разговаривал и писал на латыни, английском, французском. А в 62 года освоил русский, чтобы читать в оригинале труды Лобачевского.

Гаусс был дважды женат, стал отцом для шести детей. К сожалению, обе супруги умерли рано, а один из детей погиб в младенчестве.

Памятник Гауссу в Брауншвейге с изображенной на нём 17-лучевой звездой

Скончался Карл Гаусс в Гёттингене 23 февраля 1855 года. В его честь по приказу Короля Ганновера Георга V отчеканили медаль с портретом ученого и его титулом – «король математиков».

Этапы жизни

Родился Карл Гаусс 30 апреля 1777 года в немецком герцогстве Брауншвейг в семье бедного смотрителя каналов. Примечательно, что точной даты появления на свет его родители не помнили – Карл сам вывел ее в будущем.

Дом, где родился Гаусс

Уже в 2 года родственники мальчика признали его гением. В 3 года он читал, писал и исправлял счетные ошибки отца. Позже Гаусс вспоминал, что считать научился раньше, чем разговаривать.

В школе гениальность мальчика подметил его учитель Мартин Бартельс, который позже обучал Николая Лобачевского. Педагог направил ходатайство герцогу Брауншвейгскому и добился для юноши стипендии в крупнейшем техническом университете Германии.

С 1792 по 1795 год Карл Гаусс провел в стенах Брауншвейгского университета, где изучал труды Лагранжа, Ньютона, Эйлера. Следующие 3 года он проучился в Гёттингенском университете. Его учителем стал выдающийся немецкий математик Авраам Кестнер.

На втором году обучения ученый начинает вести дневник наблюдений. Позже биографы почерпнут из него много открытий, которые Гаусс не оглашал при жизни.

В 1798 году Карл возвращается на родину. Герцог оплачивает публикацию докторской диссертации ученого и жалует ему стипендию. В Брауншвейге Гаусс остается до 1807 года. В этот период он занимает должность приват-доцента местного университета.

В 1806 году на войне гибнет покровитель молодого ученого. Но Карл Гаусс уже сделал себе имя. Его наперебой приглашают в разные страны Европы. Математик переходит на работу в немецкий университетский город Гёттинген.

На новом месте он получает должность профессора и директора обсерватории. Здесь он остается вплоть до самой смерти.

Широкое признание Карл Гаусс получил еще при жизни. Он был членом-корреспондентом АН в Петербурге, награжден премией Парижской АН, золотой медалью Лондонского королевского общества, стал лауреатом медали Копли и членом Шведской АН.

Детство и ранние годы

Карл Фридрих Гаусс, сын бедняка и необразованной матери, самостоятельно разгадал загадку даты собственного рождения и определил её как 30 апреля 1777 г. Гаусс с детства проявлял все признаки гениальности. Главный труд всей своей жизни, «Арифметические исследования», юноша закончил ещё в 1798 г., когда ему был всего 21 год, хотя издан он будет лишь в 1801 г

Работа эта имела первостепенную важность для совершенствования теории чисел как научной дисциплины, и представила эту область знаний в том виде, в каком мы знаем её сегодня. Потрясающие способности Гаусса так поразили герцога Брауншвейгского, что он отправляет Карла на обучение в Карлов коллегиум (ныне – Брауншвейгский технический университет), который Гаусс посещает с 1792 г

по 1795 г. В 1795-1798 г.г. Гаусс переходит в Гёттингский университет. За свои университетские годы математик доказал немало значимых теорем.

Биография Карла Фридрих Гаусса (1777-1855 гг.)

Краткая биография:

Имя: Карл Фридрих Гаусс

Дата рождения: 30 апреля 1777 г.

Дата смерти: 23 февраля 1855 г.

Образование: Гёттингенский университет

Место рождения: Брауншвейг

Место смерти: Гёттинген

Карл Фридрих Гаусс – немецкий астроном, математик и физик: биография с фото, открытия, интересные факты, пояс астероидов между Марсом и Юпитером, орбита Цереры.

Карл Фридрих Гаусс, одаренный невероятными математическими способностями, знаменитый ученый и астроном, родился в маленьком герцогстве Брауншвейг 30 апреля 1777 г. В детстве его учителя  называли  вундеркиндом, мальчик отличался большими способностями в учебе, его успехи превосходили  сверстников  в изучении точных наук. Один из его учителей, Мартин Бартельс, оценил научный потенциал Карла Фридриха и помог ему получить дальнейшее образование. В 1795 году юный Гаусс успешно окончил колледж и поступил в Геттингенский университет. Во время дальнейшего обучения в университете молодой человек проявлял необыкновенные способности в изучении, как точных наук, так и иностранных языков.

Одним из первых громких успехов Карла Фридриха Гаусса было доказательство построения при помощи циркуля и линейки правильного семнадцатиугольника. В университете в 1801 году преуспевающий в математике студент закончил свою первую серьезную работу под названием «Арифметические исследования».

После окончания университета некоторое время Гауссу пришлось пожить дома, а затем, по рекомендации выдающегося ученого Александра Гумбольдта, его приняли на работу в Геттинген, где он до конца жизни проработал директором обсерватории.

Гаусс проявлял себя в математике главным образом, но его достижения коснулись и астрономии. Так, с помощью него был открыт пояс астероидов, который находится между Марсом и Юпитером. Гаусс рассчитал параметры орбиты планеты Церера, вследствие чего было установлено, что она относится к абсолютно новому виду небесных тел.

Самым знаменитым трудом, проделанным Карлом Фридрихом Гауссом, была работа под названием «Теория движения небесных тел». Именно в ней ученый предложил теорию возмущения орбит. С помощью него он и его последователи могли с точностью вычислять орбиты небесных тел. Так, Гаусс, после публикования своей работы, вычислил орбиту кометы, а на следующий год вычислил орбиту другой.

В математике достижения Гаусса оказались невероятно ценными. Он запомнился в истории как величайший математик, двигатель прогресса и развития науки. Знаменитая теорема алгебры, термин  «гауссова кривизна», основы дифференциальной геометрии вошли в основу фундаментальных математических законов. «Исследования относительно кривых поверхностей» были оценены при жизни ученого и стали классикой в математике. «Теория биквадратичных вычетов» и открытие комплексных чисел также стали научным достоянием Гаусса.

Отличился Карл Фридрих Гаусс и в области физики. Его интересовала электромагнитная индукция, магнитные поля и электричество. Даже единица измерения в физике названа в его честь, магнитная индукция стала измеряться в гауссах. Вместе со своим коллегой Вильгельмом Вебером, он изобрел электрический телеграф. Это изобретение было первым в своем роде и было представлено публике в 183 году.

Карл Фридрих Гаусс был известен во всем мире, его талант и научные достижения признавали в разных странах. В России, Англии и Франции ученый был удостоен различными медалями и наградами за свои достижения. Кроме того, ученый превосходно владел языками, свободно говорил на английском, французском языках и даже латыни.

Карл Гаусс был великим ученым, который проявил свои математические таланты в разных областях науки. Он прожил долгую жизнь, за которую получил призвание и внес огромный вклад в развитие науки. Умер ученый в 1855 году.

Неевклидова теория

Согласно данным, в 1818 году Гауссу первому удалось построить базу для неевклидовой геометрии, теоремы которой были бы возможны в реальности. Неевклидовая геометрия представляет собой область науки, отличимой от евклидовой. Основная особенность евклидовой геометрии – в наличии аксиом и теорем, которые не требуют подтверждений. В своей книге «Начала» Евклид вывел утверждения, которые должны приниматься без доказательств, ведь они не могут быть изменены. Гаусс был первым, кому удалось доказать, что теории Евклида не всегда могут восприниматься без обоснований, так как в определенных случаях они не имеют прочной базы доказательств, которая удовлетворяет всем требованиям эксперимента. Так появилась неевклидова геометрия. Конечно, основные геометрические системы были открыты Лобачевским и Риманом, но метод Гаусса – математика, умеющего смотреть вглубь и находить истину, – положил начало этому разделу геометрии.

Поздние годы

В 1831 г. Гаусс знакомится с профессором физики Вильгельмом Вебером, и знакомство это оказалось плодотворным. Их совместный труд приводит к новым открытиям в области магнетизма и установлению правил Кирхгофа в области электричества. Сформулировал Гаусс и закон собственного имени. В 1833 г. Вебер и Гаусс изобретают первый электромеханический телеграф, связавший обсерваторию с Институтом физики Гёттингена. Вслед за этим, во дворе астрономической обсерватории строится обсерватория магнетическая, в которой Гаусс, совместно с Вебером, основывает «Магнетический клуб», занимавшийся замерами магнитного поля Земли в разных точках планеты. Гаусс также успешно разрабатывает технику определения горизонтальной составляющей магнитного поля Земли.

Ранние годы

Будущий математик Гаусс родился 30.04.1777 г. Это, конечно, странное явление, но выдающиеся люди чаще всего рождаются в бедных семьях. Так случилось и в этот раз. Его дедушка был обычным крестьянином, а отец работал в герцогстве Брауншвейг садовником, каменщиком или водопроводчиком. Родители узнали, что их ребенок вундеркинд, когда малышу исполнилось два года. Спустя год Карл уже умеет считать, писать и читать.

В школе его способности заметил учитель, когда дал задание подсчитать сумму чисел от 1 до 100. Гауссу быстро удалось понять, что все крайние числа в паре составляют 101, и за считанные секунды он решил это уравнение, умножив 101 на 50.

Юному математику несказанно повезло с учителем. Тот помогал ему во всем, даже похлопотал за то, чтобы начинающему дарованию выплачивали стипендию. С ее помощью Карл сумел окончить колледж (1795 год).

Начало трудовой деятельности

1796 г. оказывается самым успешным как для самого Гаусса, так и для его теории чисел. Одно за другим, он совершает важные открытия. 30 марта, например, он открывает правила построения правильного семнадцатиугольника. Он совершенствует модулярную арифметику и в значительной мере упрощает манипуляции в теории чисел. 8 апреля Гаусс доказывает закон взаимности квадратичных вычетов, что позволяет математикам найти решение любого квадратичного уравнения модулярной арифметики. 31 мая он предлагает теорему простых чисел, давая тем самым доступное объяснение каким образом простые числа распределяются среди целых чисел. 10 июля учёный делает открытие, что любое целое положительное число может быть выражено суммой не более трёх треугольных чисел.

В 1799 г. Гаусс заочно защищает диссертацию, в которой приводит новые доказательства теоремы, гласящей, что каждая целая рациональная алгебраическая функция с одной переменной может быть представлена произведением действительных чисел первой и второй степени. Он подтверждает фундаментальную теорему алгебры, которая гласит, что каждый непостоянный многочлен от одной переменной со сложными коэффициентами имеет хотя бы один комплексный корень. Его усилия в значительной мере упрощают концепцию комплексных чисел.

А в это время итальянский астроном Джузеппе Пиацци открывает карликовую планету Цереру, которая мгновенно исчезает в солнечном свечении, но, через несколько месяцев, когда Пиацци ожидает снова увидеть её на небе, Церера не появляется. Гаусс, которому только исполнилось 23 года, узнав о проблеме астронома, берётся за её разрешение. В декабре 1801 г., через три месяца напряжённой работы, он определяет позицию Цереры на звёздном небе с погрешностью всего в полградуса.

В 1807 г. гениальный учёный Гаусс получает пост профессора астрономии и главы астрономической обсерватории Гёттингена, который он будет занимать всю оставшуюся жизнь.

Достижения в других научных сферах

Вице-гелиотроп. Латунь, золото, стекло, красное дерево (создан до 1801 года). С рукописной надписью: «Собственность господина Гаусса». Находится в Университете Гёттингена, первый Физический институт.

Настоящую известность Карлу Гауссу принесли вычисления, с помощью которых он определил положение планеты Цереры, открытой в 1801 году.

В последующем ученый не раз возвращается к астрономическим исследованиям. В 1811 году он рассчитывает орбиту новообнаруженной кометы, делает вычисления для определения расположения кометы «пожара Москвы» в 1812 году.

В 20-х годах 19 века Гаусс работает в сфере геодезии. Именно он создал новую науку – высшую геодезию. Также разрабатывает вычислительные методы для проведения геодезической съемки, издает цикл трудов по теории поверхностей, вошедших в публикацию «Исследования относительно кривых поверхностей» в 1822 году.

Обращается ученый и к физике. Он развивает теории капиллярности и системы линз, закладывает основы электромагнетизма. Совместно с Вильгельмом Вебером изобретает электрический телеграф.

Гаусс – математический король

На жизнь юного Карла повлияло желание его матери сделать из него не грубого и неотесанного человека, каким был его отец, а умную и разностороннюю личность. Она искренне радовалась успехам сына и боготворила его до конца своей жизни.

Гаусса многие ученые считали отнюдь не математическим королем Европы, его называли королем мира за все исследования, труды, гипотезы, доказательства, созданные им. В последние годы жизни математического гения ученые мужи воздавали ему славу и почет, но, несмотря на популярность и мировую известность Гаусс так и не обрел полноценного счастья. Однако же по воспоминаниям его современников великий математик предстает позитивным, дружелюбным и жизнерадостным человеком.

Гаусс работал практически до своей кончины – 1855 года. До самой смерти этот талантливый человек сохранял ясность ума, юношескую жажду к знаниям и вместе с тем безграничное любопытство.

Анекдоты

Существует несколько историй его раннего гения. Согласно одному, его зачатки стали очень заметны в возрасте трех лет, когда он, ментально и без ошибок в своих расчетах, ошибка его отец сделал на бумаге при расчете ces.

Другая история имеет то, что в начальной школе после юного Гаусса misbehaved, его учитель, Дж. Г. Тттнер, дал ему задание: добавить список целых чисел в арифметической прогрессии; как история чаще всего рассказывается, это были цифры от 1 до 100. Молодой Гаусс, вероятно, дал правильный ответ в течение нескольких секунд, на удивление своего учителя и его помощника Мартина Элса.

Метод Гаусса состоял в том, чтобы воплотить в жизнь то паирвизное добавление терминов с противоположных концов списка, что привело к идентичным межмедиатическим суммам: 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101, и так далее, для общей суммы 50 × 101 = 5050. Однако детали истории в лучшем случае неапробированы (см. для обсуждения оригинала Sorithoria) другой источник von фон Shauthin;

Он называл cs “королевой наук” и якобы однажды поддержал f в необходимости немедленного понимания личности Эйлера в качестве ориентира в соответствии с превращением в первоклассный

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий